Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transient light-induced intracellular oxidation revealed by redox biosensor.

Identifieur interne : 000694 ( Main/Exploration ); précédent : 000693; suivant : 000695

Transient light-induced intracellular oxidation revealed by redox biosensor.

Auteurs : Vladimir L. Kolossov [États-Unis] ; Jessica N. Beaudoin ; William P. Hanafin ; Stephen J. Diliberto ; Paul J A. Kenis ; H Rex Gaskins

Source :

RBID : pubmed:24025674

Descripteurs français

English descriptors

Abstract

We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

DOI: 10.1016/j.bbrc.2013.09.011
PubMed: 24025674
PubMed Central: PMC3830497


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transient light-induced intracellular oxidation revealed by redox biosensor.</title>
<author>
<name sortKey="Kolossov, Vladimir L" sort="Kolossov, Vladimir L" uniqKey="Kolossov V" first="Vladimir L" last="Kolossov">Vladimir L. Kolossov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA. Electronic address: viadimer@illinois.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Beaudoin, Jessica N" sort="Beaudoin, Jessica N" uniqKey="Beaudoin J" first="Jessica N" last="Beaudoin">Jessica N. Beaudoin</name>
</author>
<author>
<name sortKey="Hanafin, William P" sort="Hanafin, William P" uniqKey="Hanafin W" first="William P" last="Hanafin">William P. Hanafin</name>
</author>
<author>
<name sortKey="Diliberto, Stephen J" sort="Diliberto, Stephen J" uniqKey="Diliberto S" first="Stephen J" last="Diliberto">Stephen J. Diliberto</name>
</author>
<author>
<name sortKey="Kenis, Paul J A" sort="Kenis, Paul J A" uniqKey="Kenis P" first="Paul J A" last="Kenis">Paul J A. Kenis</name>
</author>
<author>
<name sortKey="Gaskins, H Rex" sort="Gaskins, H Rex" uniqKey="Gaskins H" first="H Rex" last="Gaskins">H Rex Gaskins</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24025674</idno>
<idno type="pmid">24025674</idno>
<idno type="doi">10.1016/j.bbrc.2013.09.011</idno>
<idno type="pmc">PMC3830497</idno>
<idno type="wicri:Area/Main/Corpus">000707</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000707</idno>
<idno type="wicri:Area/Main/Curation">000707</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000707</idno>
<idno type="wicri:Area/Main/Exploration">000707</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transient light-induced intracellular oxidation revealed by redox biosensor.</title>
<author>
<name sortKey="Kolossov, Vladimir L" sort="Kolossov, Vladimir L" uniqKey="Kolossov V" first="Vladimir L" last="Kolossov">Vladimir L. Kolossov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA. Electronic address: viadimer@illinois.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Beaudoin, Jessica N" sort="Beaudoin, Jessica N" uniqKey="Beaudoin J" first="Jessica N" last="Beaudoin">Jessica N. Beaudoin</name>
</author>
<author>
<name sortKey="Hanafin, William P" sort="Hanafin, William P" uniqKey="Hanafin W" first="William P" last="Hanafin">William P. Hanafin</name>
</author>
<author>
<name sortKey="Diliberto, Stephen J" sort="Diliberto, Stephen J" uniqKey="Diliberto S" first="Stephen J" last="Diliberto">Stephen J. Diliberto</name>
</author>
<author>
<name sortKey="Kenis, Paul J A" sort="Kenis, Paul J A" uniqKey="Kenis P" first="Paul J A" last="Kenis">Paul J A. Kenis</name>
</author>
<author>
<name sortKey="Gaskins, H Rex" sort="Gaskins, H Rex" uniqKey="Gaskins H" first="H Rex" last="Gaskins">H Rex Gaskins</name>
</author>
</analytic>
<series>
<title level="j">Biochemical and biophysical research communications</title>
<idno type="eISSN">1090-2104</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biosensing Techniques (MeSH)</term>
<term>CHO Cells (MeSH)</term>
<term>Cricetinae (MeSH)</term>
<term>Cricetulus (MeSH)</term>
<term>Cytoplasm (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Disulfides (metabolism)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Green Fluorescent Proteins (chemistry)</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Light (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Recombinant Fusion Proteins (chemistry)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules CHO (MeSH)</term>
<term>Cricetinae (MeSH)</term>
<term>Cricetulus (MeSH)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Cytosol (métabolisme)</term>
<term>Disulfures (métabolisme)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lumière (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de fusion recombinantes (composition chimique)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines à fluorescence verte (composition chimique)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Techniques de biocapteur (MeSH)</term>
<term>Thiols (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Disulfides</term>
<term>Glutaredoxins</term>
<term>Green Fluorescent Proteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Cytosol</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytoplasme</term>
<term>Cytosol</term>
<term>Disulfures</term>
<term>Glutarédoxines</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines à fluorescence verte</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biosensing Techniques</term>
<term>CHO Cells</term>
<term>Cricetinae</term>
<term>Cricetulus</term>
<term>Humans</term>
<term>Light</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules CHO</term>
<term>Cricetinae</term>
<term>Cricetulus</term>
<term>Humains</term>
<term>Lumière</term>
<term>Oxydoréduction</term>
<term>Techniques de biocapteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24025674</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1090-2104</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>439</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Biochemical and biophysical research communications</Title>
<ISOAbbreviation>Biochem Biophys Res Commun</ISOAbbreviation>
</Journal>
<ArticleTitle>Transient light-induced intracellular oxidation revealed by redox biosensor.</ArticleTitle>
<Pagination>
<MedlinePgn>517-21</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbrc.2013.09.011</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0006-291X(13)01471-X</ELocationID>
<Abstract>
<AbstractText>We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.</AbstractText>
<CopyrightInformation>Copyright © 2013 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kolossov</LastName>
<ForeName>Vladimir L</ForeName>
<Initials>VL</Initials>
<AffiliationInfo>
<Affiliation>Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA. Electronic address: viadimer@illinois.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beaudoin</LastName>
<ForeName>Jessica N</ForeName>
<Initials>JN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hanafin</LastName>
<ForeName>William P</ForeName>
<Initials>WP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>DiLiberto</LastName>
<ForeName>Stephen J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kenis</LastName>
<ForeName>Paul J A</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gaskins</LastName>
<ForeName>H Rex</ForeName>
<Initials>HR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R33 CA137719</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R33-CA137719</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>09</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochem Biophys Res Commun</MedlineTA>
<NlmUniqueID>0372516</NlmUniqueID>
<ISSNLinking>0006-291X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516005">GLRX protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015374" MajorTopicYN="Y">Biosensing Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016466" MajorTopicYN="N">CHO Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006224" MajorTopicYN="N">Cricetinae</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003412" MajorTopicYN="N">Cricetulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="Y">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GSH</Keyword>
<Keyword MajorTopicYN="N">GSSG</Keyword>
<Keyword MajorTopicYN="N">Glutathione</Keyword>
<Keyword MajorTopicYN="N">Green fluorescent protein (GFP)</Keyword>
<Keyword MajorTopicYN="N">Grx1</Keyword>
<Keyword MajorTopicYN="N">Light-induced oxidation</Keyword>
<Keyword MajorTopicYN="N">Live cell imaging</Keyword>
<Keyword MajorTopicYN="N">Redox-sensitive probe</Keyword>
<Keyword MajorTopicYN="N">human glutaredoxin 1</Keyword>
<Keyword MajorTopicYN="N">oxidized glutathione</Keyword>
<Keyword MajorTopicYN="N">redox-sensitive green fluorescent proteins</Keyword>
<Keyword MajorTopicYN="N">reduced glutathione</Keyword>
<Keyword MajorTopicYN="N">roGFP</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>08</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>9</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24025674</ArticleId>
<ArticleId IdType="pii">S0006-291X(13)01471-X</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbrc.2013.09.011</ArticleId>
<ArticleId IdType="pmc">PMC3830497</ArticleId>
<ArticleId IdType="mid">NIHMS523909</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Dec 8;275(49):38891-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Integr Biol (Camb). 2011 Mar;3(3):208-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21183971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):13044-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 1996 Sep 9;733(1):9-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8891242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 May;22(9):1440-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21372177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2011 May;50(5):295-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21548891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2011 Jul 15;124(Pt 14):2349-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21693587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):1943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wound Repair Regen. 2012 Jan-Feb;20(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22107255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2012 Jun;237(6):652-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22715429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 Sep-Oct;8(9-10):1865-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16987039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Sep;1772(9):1041-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17600689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2008 Feb;233(2):238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18222979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Aug 19;47(33):8678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18652491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microsc. 2008 Aug;231(2):299-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18778428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 28;135(5):933-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19026441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2008;476:51-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19157008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Mar 15;122(Pt 6):753-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Vitro Cell Dev Biol Anim. 2009 May-Jun;45(5-6):226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2010 Feb 19;106(3):526-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Apr;138(4):493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 1;13(5):621-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2001 Jun 1;30(11):1191-212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11368918</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Beaudoin, Jessica N" sort="Beaudoin, Jessica N" uniqKey="Beaudoin J" first="Jessica N" last="Beaudoin">Jessica N. Beaudoin</name>
<name sortKey="Diliberto, Stephen J" sort="Diliberto, Stephen J" uniqKey="Diliberto S" first="Stephen J" last="Diliberto">Stephen J. Diliberto</name>
<name sortKey="Gaskins, H Rex" sort="Gaskins, H Rex" uniqKey="Gaskins H" first="H Rex" last="Gaskins">H Rex Gaskins</name>
<name sortKey="Hanafin, William P" sort="Hanafin, William P" uniqKey="Hanafin W" first="William P" last="Hanafin">William P. Hanafin</name>
<name sortKey="Kenis, Paul J A" sort="Kenis, Paul J A" uniqKey="Kenis P" first="Paul J A" last="Kenis">Paul J A. Kenis</name>
</noCountry>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Kolossov, Vladimir L" sort="Kolossov, Vladimir L" uniqKey="Kolossov V" first="Vladimir L" last="Kolossov">Vladimir L. Kolossov</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000694 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000694 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24025674
   |texte=   Transient light-induced intracellular oxidation revealed by redox biosensor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24025674" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020